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Compositional Modeling With DPNs 

Geoffrey Zweig * Stuart Russell * 

Sept. 8, 1997 

Abstract 

Dynamic probabilistic networks (DPNs) are a powerful and efficient method for encoding stochastic 
temporal models. In the past, however, their use has been largely confined to the description of uniform 
temporal processes. In this paper we show how to combine specialized DPN models to represent inho- 
mogeneous processes that progress through a sequence of different stages. We develop a method that 
takes a set of DPN submodels and a stochastic finite state automaton that defines a legal set of submodel 
concatenations, and constructs a composite DPN. The composite DPN is shown to represent correctly 
the intended probability distribution over possible histories of the temporal process. The use of DPNs 
allows us to take advantage of efficient, general-purpose inference and learning algorithms and can confer 
significant advantages over HMMs in terms of statistical efficiency and representational flexibility. We 
illustrate these advantages in the context of speech recognition. 

1    Introduction 

Many temporal processes evolve through a series of distinct stages, each of which is best represented by a 
separate model. For example, the process of uttering a word can be viewed as the sequential articulation of 
its constituent phonetic units. Similarly, the process of writing a word can be decomposed into the sequential 
formation of its letters. When modeling these processes, it is convenient to create submodels for each stage, 
and to model the entire process as a composition of these atomic parts. By factoring a complex model into 
a combination of simpler ones, composition allows a combinatorial reduction in the number of models that 
need to be learned from observations. 

Model composition raises two crucial but orthogonal issues. The first is specification of legal submodel 
sequences. In this paper, we consider the use of stochastic finite-state automata (SFSAs) to describe a prob- 
ability distribution over possible submodel sequences. This is a fairly standard choice in areas such as speech 
and handwriting recognition, although some systems also use stochastic context-free grammars (SCFGs) for 
representing the higher-level structure of whole sentences. The second issue is submodel representation. Here 
we describe the use of dynamic probabilistic networks (DPNs) [5] (also called factorial HMMs [7]), which 
decompose the state of the process being modeled into a set of state variables. DPNs include both HMMs 
and Kaiman filters as special cases [12, 11]. 

The use of DPNs for submodels confers several advantages over HMMs, which we describe below. How- 
ever, composing DPN submodels is not quite as simple as composing HMMs. Given an SFSA with HMM 
submodels, the HMMs can simply be strung together according to the SFSA structure and formed into a 

•Research supported by ARO MURI DAAH04-96-1-0341 and ONR N00014-97-1-0941. 
♦Research supported by ARO MURI DAAH04-96-1-0341 and ONR N00014-97-1-0941. 
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Figure 1: Top: A simple DPN, "unrolled" to show five time steps. Bottom: A DPN with a factored state 
representation. The factored representation can describe the evolution of an equal number of total states 
with exponentially fewer parameters. Variables whose values are known are shaded. 

larger HMM, which can then be trained on observations and used for inference. The contribution of this 
paper is to show how to achieve the analogous result with DPNs. We present a method that takes a set of 
DPN submodels and an SFSA that defines a legal set of model concatenations, and constructs a composite 
DPN that represents correctly the intended probability distribution over possible histories of the temporal 
process. Our approach has the following advantages: 

• Statistical efficiency. DPNs are factored representations of a probability distribution, and often have 
exponentially fewer parameters than unfactored representations such as standard HMMs. Hence these 
parameters can be estimated more accurately with a fixed amount of data [13, 7]. 

• There are efficient, general-purpose algorithms for doing inference [3, 12] and learning [2, 12] in DPNs. 
No special-purpose algorithms need be derived for handling representational extensions to HMMs that 
are required in areas such as speech recognition (see, e.g., [6]). 

• Sharing variables between submodels leads to a natural way of describing transitional behavior. This 
is important for modeling coarticulation in speech recognition where the pronunciation of a phonetic 
unit depends on the positions of the tongue, jaw, and other articulators at the end of the preceding 
phonetic unit. 

This paper examines only one aspect of what promises to be a fertile research area: the use of graphical models 
to specify complex hypotheses concerning causal structures in areas of scientific or commercial interest. Many 
other issues in temporal modeling with DPNs, especially the modeling of processes over multiple time scales, 
are discussed in [1]. The work of [12] also emphasizes the modeling power of DPNs in the context of speech 
recognition, but does not deal with submodel concatenation. 

2    Probabilistic Networks and Dynamic Probabilistic Networks 

In recent years, probabilistic or Bayesian networks [9] have emerged as the primary method for representing 
and manipulating probabilistic information in the AI community. These networks can be used to represent 
either static events, such as the co-occurrence of a set of diseases and symptoms, or to represent temporal 
processes such as the motion of an automobile in traffic. 
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A probabilistic network represents the joint probability distribution of a set of random variables {Xi,..., Xn } ■ 
Denoting the assignment of a specific value to a variable by a lower-case letter, the probability of a joint 
assignment of values is specified with the chain rule of probabilities and a set of conditional independence 
assumptions as: P(xi,...,xn) = Y[iP(xi\Parents(Xi)). Here Parents(Xi) refers to a subset of the vari- 
ables X\. ..Xi-i; given values for its parents, Xi is assumed to be conditionally independent of all other 
lower-indexed variables. The conditional probabilities associated with each variable are often stored in tables 
referred to as CPTs. A probabilistic network has a convenient graphical representation in which the variables 
appear as nodes, and a variable's parents are specified by the arcs leading into it. 

In the dynamic case, a probabilistic network models a system as it evolves over time [5]. At each point in 
time, the values Xi,.. -,Xn are of interest. For example, to model car-driving, we are interested in lane- 
position and speed at each point in time. A DPN uses a set of variables X\ to represent the value of the 
ith quantity at time t. DPNs are typically time-invariant so that the topology of the network is a repeating 
structure, and the CPTs do not change with time. The joint probability distribution is then represented as 
Yli t P(x\\Parents(Xi)). In networks with the Markov property, the parents of a variable in timeslicetf must 
occur in either slice t or t — 1. The conditional distributions within and between slices are repeated for all 
t > 0, so that DPNs can be specified simply by giving two slices and the links between them. When applied 
to an observation sequence of a given length, the DPN is notionally "unrolled" to produce a probabilistic 
network of the appropriate size to accommodate the observations. 

The top of Figure 1 illustrates a generic DPN unrolled to show five time steps. The variables are divided 
into state variables, whose value is unknown, and observation variables, whose value is known. The state 
variables evolve in time according to a model encoded in their CPTs, which we refer to as the state evolution 
model. The state variables are related to the observation variables by the CPTs of the observation nodes. 
The bottom of Figure 1 shows a more realistic DPN in which the hidden state has been factored. We refer 
to a specific set of observations as o; similarly, a specific assignment of values to the hidden state variables 
is denoted by s. 

Recent research has developed a set of algorithms for computing with probabilistic networks; [9, 2, 8] provide 
a good introduction. Specifically, there are dynamic programming procedures for 

1. Computing the probability of an observation sequence: P(o) = ]T)S P(o, s). 

2. Computing the most likely assignment of values to the hidden variables: maxs P(o, s). 

3. Using a dataset to estimate the model parameters with the expectation-maximization (EM) procedure. 

3    Network Structures for Model Composition 

3.1    Why Model Composition with DPNs is Difficult 

The difficulty in concatenating DPN models is best illustrated with an example. Suppose the word "no" is 
uttered, and there are separate models for the phonemes 'n' and 'o\ Figure 2 shows the simplest possible such 
submodels. There is a hidden state variable representing articulator positions, and a variable representing 
the sound observed at each point in time. The state CPTs specify articulator dynamics, and the observation 
CPTs link the articulator positions to the sounds made. Each submodel can be duplicated for an arbitrary 
number of timesteps. 

Now consider constructing a composite model for a specific fixed-length utterance of the word "no." This 
is shown at the bottom of Figure 2.   A naive concatenation of the two models would have to explicitly 
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n articulator motion for 'n' . articulator motion for 'o' 

O [1*0 articulator state 
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^ which articulator model? 
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Figure 2: Concatenating submodels. Naive submodel concatenation requires specifying which state-evolution 
model to use at each point in time. 
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stochastic state nodes 

Figure 3: An SFSA and a DPN network representation for fixed-length observation sequences. Note that in 
the automaton the arcs represent transition probabilities while in the probabilistic network they represent 
conditional independence relations. The initial and final states of the SFSA are shaded. The shaded node 
in the DPN represents an artificial observation; the CPT of this variable will encode the length of the 
observation sequence. 

partition the model into a fixed-length 'n' prefix followed by a fixed-length 'o' suffix. In practice, however, 
such segmentations are unavailable. Therefore, when doing inference or learning, all reasonable partitionings 
of an observation sequence between the models must be considered. Since the number of partitionings grows 
exponentially with the number of submodels, this is a demanding task that must be solved in an efficient 
way. 

In the following sections we show how to construct a DPN that represents all the partitionings allowed by 
an arbitrary SFSA. The key problem is that the CPTs must be uniform across time, and the solution is to 
introduce an extra "index" variable in each timeslice on which to condition the state-evolution CPT. This 
creates a uniform structure that can generate the appropriate switching behaviors between models. 

3.2    Specifying Legal Model Compositions 

One way of specifying a partitioning between models is with an SFSA, where each path through the au- 
tomaton specifies an acceptable partitioning. In this section, we show how to structure a DPN so that the 
inference and learning processes implicitly sum over all the partitionings allowed by an arbitrary SFSA; we 
then show how this enables model composition. We focus on fixed-length observation sequences because 
the training examples for most problems consist of fixed-length sequences. Similar results can be shown for 
infinite-length sequences. 
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Figure 4: A DPN structured for model composition. The submodel-index variable specifies which submodel 
to use at each point in time. 

We begin by constructing a trivial translation from SFSAs to degenerate DPNs. Consider the SFSA shown 
at the top of Figure 3. The nodes in this diagram represent states, and there are transition probabilities 
associated with the arcs. The initial and final states are shaded. The probability of a length k path Si S2 ■ ■ ■ s* 
through the automaton is given by P,2SlPt!>>3. • •-?»*»*_! where P,iSi is the probability of a transition from 
state Sj to state s<. The simple chain in the bottom of Figure 3 is the most straightforward way to represent 
paths of length k through this structure with a DPN. Each node represents a variable whose value is the 
state of the SFSA at a specific time. Each DPN variable M1.. .Mk has a distinct value for each state 
in the automaton, and there is a one-to-one mapping between paths of length k through the automaton 
and assignments of values to the variables in the DPN. So, for example, the path 1,3,5,8,9 through the 
SFSA corresponds to the assignments M1 = 1, Af2 = 3,M3 = 5,M4 = 8,M5 = 9. The shaded DPN node 
represents a binary-valued variable whose value is always observed to be 1. The CPT of this "terminal 
observation" will encode the fact that the observation sequence is k steps long. 

The transition probabilities associated with the arcs in the automaton are reflected in the CPTs associated 
with the variables in the DPN. If the probability of transitioning from state * to state j in the automaton is 
PiiSi, then P(Mt+1 = j\Mf = i) = Ptitj in the CPT associated with Mt+1. 

All paths through the SFSA must start in the specified initial state, and end in the single final state. 
Suppose the SFSA states are numbered 1.. .n, with 1 corresponding to the initial state and n to the final 
state. By setting the prior distribution on M1 to P(M1 = 1) = 1, the constraint on initial states is satisfied. 
By setting the conditional probability on the terminal observation T to P(T = l\Mk = n) = 1, and 
P(T = \\Mk ^ n) = 0, we ensure that any assignments of values to the variables which do not terminate in 
the final state are assigned a probability of 0. We summarize with the following proposition (proof omitted). 

Proposition 1. Every assignment of values to the nodes in the DPN either 1) corresponds to a legal path 
through the SFSA and is assigned a probability equal to the probability of the path in the SFSA, or 2) 
corresponds to an illegal path in the SFSA and is assigned a probability of 0. 

3.3    Model Composition 

Figure 4 illustrates the way in which model composition is achieved. The submodel-index variable specifies 
which submodel to use at each point in time. The constraints on legal sequences of submodels are encoded 
in the CPTs of this layer, as described above. The submodel state layer represents the hidden variables in 
the DPN submodels.1 By conditioning the submodel state variables on the submodel-index variable in the 
control layer, the desired switching behavior between models is achieved. 

'For convenience, we assume that each submodel has the same state variables, but that their behavior differs. This is 
reasonable when there is an underlying physical system such as the vocal tract which behaves differently in different phonetic 
contexts, but which nevertheless has the same parts. The assumption can be relaxed easily [1]. 
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index 

articulators 
tongue, lips 
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deterministic, fixed 

deterministic, fixed 
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deterministic, fixed 

£)  0 stochastic, learned 
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Figure 5: A DPN structured for speech recognition. The unshaded variables are hidden, and the labels 
attached represent just one acceptable assignment of values to them. The tongue moves from the alveolar 
ridge to the back of the mouth; the lips move from an unrounded to a rounded configuration. The properties 
of each node are shown to the right. Nodes whose CPTs are fixed are fixed on a per-example basis. 

This result can be stated somewhat more formally as follows. Let y* denote an assignment of values to 
the observation and submodel state variables at time t, and let m* denote an assignment of a value to the 
submodel index variable at time t. The combination of a SFSA together with a set of DPN submodels 
specifies a probability distribution over sequences of y values. The probability of a particular sequence of 
y values is given by the weighted sum over all possible submodel sequences of the probability that each 
submodel sequence generates the given sequence of y values: 

P(y1...yfe)=    £   P{m1...mk)P(y1...yk\m1...mk) 
mi...mi. 

By the Markov property of the SFSA and the DPN submodels, we then have 

P(y1...yh) =    £   P(mK..mk)P(y1\m1)P(y2\y1,m2)...P(yk\yk-\mk) 
my...mi, 

The first factor in each term corresponds to the probability of a particular path through the SFSA and is 
determined by the CPTs of the control layer; the remaining factors correspond to the probability of the 
specified behavior of the submodel variables, and is determined by the CPTs of the submodel state and 
observation layers. From the semantics of probabilistic networks given in Section 2, applied to the composite 
DPN model proposed above, we then have the following: 

Proposition 2. The probability distribution over assignments to the observation and submodel state 
variables y1.. .y* that is represented by the composite DPN is identical to that represented by the input 
SFSA and DPN submodels. 

This proposition sanctions the use of generic DPN inference and learning algorithms, together with the 
composite DPN structure, to handle models specified by any SFSA sequence model and DPN submodels. 

4    A Speech Recognition Example 

In In this section we illustrate the process of model composition with the example of speech recognition. In 
this case, the training data consists of a set of utterances {Ui,U2..Un}, each with an associated phonetic 
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transcription: {{pu,Pi2■Pig),iP2i,P22-P2r)-(Pni,Pn2-Pm)}- The goal is to learn a probabilistic model for 
each phoneme, and then to construct word and sentence-level models through composition. Note that the 
SFSA corresponding to an utterance is particularly simple in this case: it is a linear structure proceeding in 
the appropriate order though the phonemes of the utterance. 

Figure 5 illustrates a DPN that is structured for model composition in speech recognition. For clarity, 
we explicitly distinguish between CPTs that encode deterministic relationships and those which encode 
stochastic relationships. Proper handling of the deterministic variables also leads to computational efficiency. 
The phoneme-index nodes specify the index of the phoneme being uttered, i.e. the first, second, etc. For 
a given utterance, there is a deterministic mapping from the phoneme index to the actual phoneme. For 
example, in the word "no," the first phoneme is 'n' and the second is 'o'. This mapping is encoded in 
the CPT of the phoneme node, and is adjusted for each training utterance or recognition hypothesis. The 
terminal observation ensures that the phonetic transcription is respected. Since the number of phonemes 
varies from utterance to utterance, the terminal observation's CPT is also adjusted on a per-utterance basis. 
During the training phase, the number of phonemes is given for each utterance, and during the recognition 
phase the network computes the probability of different hypotheses, each of which also has a specific number 
of phonemes. The transition nodes are stochastic, and here depend on the phoneme being uttered. The 
acoustic observations depend on the articulator variables, which in this simple model represent the tongue 
and lips. 

In linguistic terms, the CPTs of the transition variables represent the expected duration of different phonetic 
units. The CPTs associated with the articulator variables describe both linguistic knowledge about the target 
positions of the articulators for the various phonetic units, and additionally the basic physics of the vocal 
apparatus; these CPTs explicitly model the way in which the constraints imposed by this physical model 
(e.g. inertia) modulate the target positions. The CPTs associated with the observation variables describe 
the sounds generated by particular physical configurations of the vocal apparatus. The precise topology 
and initial parameter estimates for these connections embody in a very explicit way a phonological theory. 
Obviously, the better the initial estimates, the easier it will be to learn. 

DPN models can express a number of speech phenomena in a natural way—for example, the constancy of 
accent and gender during speech, and in particular coarticulatory effects. For example, the pronunciation of 
the "s" in "nose" differs slightly from that in "cheese" because the preceding vowel leaves the tongue and 
lips in different states. This is automatically handled by the DPN model—the concatenation includes the 
"inertia" model for tongue and lips, hence the distribution over articulator states during the "s" will reflect 
the preceding vowel. In contrast, the handling of coarticulatory effects in the HMM context requires the 
use of diphones or triphones to represent combinations of phonemes. This results in a much larger set of 
phonetic states. 

We have implemented a package for doing compositional modeling with DPNs, and are in the process of 
applying it to speech recognition. We have tested it with a multi-speaker database of digits utterances. 
Without an explicit articulatory model, we achieve a word error rate of approximately 5%, and we are in the 
process of training a detailed articulatory model with articulatory data obtained from real-time, low-power 
radar imaging of the vocal tract [4]. 

5    Discussion 

Compositional DPN modeling seems to be a flexible and expressive way to represent and learn complex 
stochastic temporal models. In addition to speech, we are applying this technology to automobile control 
and human driver modeling. In our experiments, we have consistently found that whenever a factored state 
representation is an accurate reflection of the process being modeled, it confers great computational and 
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Figure 6: Comparison of learning ability for factored and unfactored representations. A ratio near 1 indicates 
that the unfactored representation is doing well. The unfactored representation has exponentially more state- 
evolution parameters, and requires exponentially more examples to achieve equal performance. With just 
one hidden state variable, the two representations are identical. 

statistical advantages over a simpler unfactored representation, as suggested in [7, 2]. Figure 6 is illustrative. 
We generated data from a model with the topology shown at the bottom of Figure 1. We then learned the 
model parameters for both this factored model and an unfactored model with an equal amount of hidden 
state. The state variables in the factored representation were binary. The observation variable could take 
2P values where P is the number of its parents. We varied the number of hidden state variables in the 
factored representation from 1 to 5. For each number of hidden states, we generated data and test sets 
from 5 randomly initialized sets of CPTs. The figure of merit for each representation is the sum of the 
log-probabilities on the 5 test sets; Figure 6 shows the ratio of these numbers, and illustrates the expected 
behavior: as the number of state variables increases, there is an exponential increase in the number of 
training examples needed for the unfactored model to reach the same prediction performance. Virtually 
identical results also hold for computation time in the learning algorithm. 

In summary, we have shown how to combine the advantages of a DPN's factored state representation with 
the flexibility of a SFSA in representing legal model compositions. This results in an expressive, concise, 
and efficient system for modeling complex stochastic processes. 
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